ntroduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	Reference

Multi-Agent Simulative Belief Ascription

Min Cheol Seo*

*Ph.D. Candidate Department of Philosophy Sungkyunkwan University Seoul, South Korea

Joint Conference of APPSA and LMPST Taiwan 2025

Introduction

Table of Contents

2 Philosophical Preliminary

3 Formal Preliminary

< A

臣

Introduction ●○○○○	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References
Folk Psychology a	nd Belief Interaction				

• In our everyday life, we often predict, explain, and coordinate another's behaviour by attributing beliefs, desires, intentions, etc.

Formal Preliminary Introduction 0000

Conclusion

References

Folk Psychology and Belief Interaction

- In our everyday life, we often predict, explain, and coordinate another's behaviour by attributing beliefs, desires, intentions, etc.
- The question is how our mind manages this often called mind-reading. And broadly, two answers are predominately considered: (i) **Theory-Theory**, and (ii) **Simulation Theory**.

Introduction Philosophical Preliminary Formal Preliminary

Мазва 0000000000 Conclusion

References

Folk Psychology and Belief Interaction

- In our everyday life, we often predict, explain, and coordinate another's behaviour by attributing beliefs, desires, intentions, etc.
- The question is how our mind manages this often called mind-reading. And broadly, two answers are predominately considered: (i) Theory-Theory, and (ii) Simulation Theory.
- Consider the following scenario:

Philosophical Preliminary

Introduction

Conclusion

References

Folk Psychology and Belief Interaction

- In our everyday life, we often predict, explain, and coordinate another's behaviour by attributing beliefs, desires, intentions, etc.
- The question is how our mind manages this often called *mind-reading*. And broadly, two answers are predominately considered: (i) **Theory-Theory**, and (ii) **Simulation Theory**.
- Consider the following scenario:
 - A: "I do not like those who make the room messy".
 - B: 'A does not like people who make the room messy, and I am one of them'

'So A does not like me'.

B : Says to C, "A does not like me".

4 ∃ ≥ < 3 ≥ </p>

Introduction Philosophical Preliminary 00000 00000 Formal Preliminary

Masba 0000000000 Conclusion

References

Folk Psychology and Belief Interaction

- In our everyday life, we often predict, explain, and coordinate another's behaviour by attributing beliefs, desires, intentions, etc.
- The question is how our mind manages this often called mind-reading. And broadly, two answers are predominately considered: (i) Theory-Theory, and (ii) Simulation Theory.
- Consider the following scenario:
 - A : "I do not like those who make the room messy".
 - $B\,$: 'A does not like people who make the room messy, and I am one of them'.

'So A does not like me'.

B : Says to C, "A does not like me".

Claim

Mental simulation is central to mind-reading.

APPSA-LMPST 2025

3 / 35

イロト イ伺ト イヨト イヨト

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion	References
ST and Simulativ	e Beliefs				

With the presented scenario, we can run with an *informal* definition:

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion	References
ST and Simulativ	e Beliefs				

With the presented scenario, we can run with an *informal* definition:

"What A would believe if A were me".

Introduction 0000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion	References
ST and Simulativ	e Beliefs				

With the presented scenario, we can run with an *informal* definition:

"What A would believe if A were me".

Definition (Simulative Belief)

B simulatively believe that A believes P iff

- B sets aside his own beliefs and adopt A's perceived beliefs,
- B let his reasoning machinery run on those stand-in states under given circumstances,
- In that pretend perspective, P turns out true; therefore, B reports A believes that P.

Introduction	Philosophical Preliminary 00000	Formal Preliminary 0000000	Masba 0000000000	Conclusion	References
Why Studying Sin	nulative Beliefs?				

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References
Why Studying Si	mulative Beliefs?				

- Empathy & moral appraisal. Feeling from the inside, not calculating from rules/theories.
- **Confabulation**. Self-projection errors when we cannot quarantine our own beliefs.

Introduction	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion	References
Why Studying Sin	nulative Beliefs?				

- **Empathy & moral appraisal**. Feeling from the inside, not calculating from rules/theories.
- **Confabulation**. Self-projection errors when we cannot quarantine our own beliefs.

• Als.

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References				
Why Studying Sir	Why Studying Simulative Beliefs?								

- **Empathy & moral appraisal**. Feeling from the inside, not calculating from rules/theories.
- **Confabulation**. Self-projection errors when we cannot quarantine our own beliefs.
- Als.
 - **ToMB**. GPT-4* class models now clear classic false-belief tests in Theory-of-Mind Benchmark. Recent studies suggest including Simulation Theory to expand and improve its accuracy.¹ [13, 2023] [12, 2024]

¹The benchmark includes: false-belief, unexpected-contents, but most importantly, *multi-agent reasoning*. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

Introduction	Philosophical Preliminary	Formal Preliminary 0000000	Masba oooooooooo	Conclusion	References				
Why Studying Sin	Why Studying Simulative Beliefs?								
		,		,	,				

- **Empathy & moral appraisal**. Feeling from the inside, not calculating from rules/theories.
- **Confabulation**. Self-projection errors when we cannot quarantine our own beliefs.
- Als.
 - **ToMB**. GPT-4* class models now clear classic false-belief tests in Theory-of-Mind Benchmark. Recent studies suggest including Simulation Theory to expand and improve its accuracy.¹ [13, 2023] [12, 2024]
 - **SARs**. Embedding a lightweight simulation module enables SARs to predict whether a vocal cue is a request vs. comment, boosting turn-taking fluency. [6, 2024]

¹The benchmark includes: false-belief, unexpected-contents, but most importantly, *multi-agent reasoning*.

Introduction ○○○●○	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion	References
Why Studying Sim	ulative Beliefs?				

臣

Introduction ○○○●○	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion	References
Why Studying Sir	nulative Beliefs?				

• **LLM ToM** \neq **Simulation**. It is only reliable, when prompts explicitly create a surrogate belief context (In SIMToM, ToMB)

Introduction	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion 00	References
Why Studying Si	mulative Beliefs?				

- LLM ToM \neq Simulation. It is only reliable, when prompts explicitly create a surrogate belief context (In SIMToM, ToMB)
- Formal Gap. We still lack a stable mapping from prompt tokens to a well-behaved relation, *R^{sim}*; without it completeness, decidability, and safety proofs fail.

Introduction	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion 00	References
Why Studying Si	mulative Beliefs?				

- LLM ToM \neq Simulation. It is only reliable, when prompts explicitly create a surrogate belief context (In SIMToM, ToMB)
- Formal Gap. We still lack a stable mapping from prompt tokens to a well-behaved relation, *R^{sim}*; without it completeness, decidability, and safety proofs fail.
- Depth, Tags, Fusion and Verification. Each adds a modal/complexity layer, thereby generating theoretic friction that current AI tool-chains don't address.

Introduction ○○○○●	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion	References
Difficulties					

Dual Perspectives. real v. surrogate.

Introduction ○○○○●	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion	References
Difficulties					

- **Dual Perspectives**. real v. surrogate.
- **2** Copy & Revise. AGM?

Introduction ○○○○●	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References
Difficulties					

- Dual Perspectives. real v. surrogate.
- **2** Copy & Revise. AGM?
- **Introspection Gap**. Which axioms?

Introduction ○○○○●	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion	References
Difficulties					
,					

- **Dual Perspectives**. real v. surrogate.
- **2** Copy & Revise. AGM?
- **Introspection Gap**. Which axioms?
- Layer Explosion. Nested beliefs

Introduction ○○○○●	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion	References
Difficulties					

- Dual Perspectives. real v. surrogate.
- **2** Copy & Revise. AGM?
- **Introspection Gap**. Which axioms?
- **4** Layer Explosion. Nested beliefs
- Verification. Safety proofs turn undecidable.

Introduction ○○○○●	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion	References
Difficulties					
					,

- **Dual Perspectives**. real v. surrogate.
- **2** Copy & Revise. AGM?
- **Introspection Gap**. Which axioms?
- **4** Layer Explosion. Nested beliefs
- Verification. Safety proofs turn undecidable.

just to name a few.

Introduction 00000	Philosophical Preliminary ●0000	Formal Preliminary 0000000	Masba 0000000000	Conclusion	References
Two Pictures					

• In describing Mental Simulation in ST, we have two rival pictures describe how simulation contributes when it is used:

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion	References
Two Pictures					

- In describing Mental Simulation in ST, we have two rival pictures describe how simulation contributes when it is used:
 - **Constitution View**. The simulation itself *is* the representation of the other's state; nothing further is required.

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion 00	References
Two Pictures					

- In describing Mental Simulation in ST, we have two rival pictures describe how simulation contributes when it is used:
 - **Constitution View**. The simulation itself *is* the representation of the other's state; nothing further is required.
 - Causation View. Simulation merely provides causal inputs to a *separate* judgment that attributes the state.

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion 00	References
Two Pictures					

- In describing Mental Simulation in ST, we have two rival pictures describe how simulation contributes when it is used:
 - **Constitution View**. The simulation itself *is* the representation of the other's state; nothing further is required.
 - Causation View. Simulation merely provides causal inputs to a *separate* judgment that attributes the state.
- Before we move on, let us briefly consider above two views.

troduc		Philosophical Preli	iminary	Formal Preliminary	Masba 0000000000	Conclusion 00	Referenc
vo Pio	ctures						
-	Dimens	sion	Goldmar (Three-S	n [9] Stage, Causation)		D, 11] (Radi on)	cal,
	Process	s flow		ightarrow run $ ightarrowet + judge$		pective-shift; vpoint wheth	
	Role of introspe		u	"inner sense" 'to simulated output	No introspe (Evans-styl	ection e ascent rout	tine)
	Concep	tual load	believes	h judgment "A P" -involving)	Core attrib non-concep	utions can b otual	е
	Status	of simulation	Simulatio attributio	on <i>causes</i> on	Simulation attribution	constitutes	
	Scope /	centrality /	A strong theories	tool inside hybrid		chanism in ind-reading	

Causation v. Constitution, Conceptual v. Non-conceptual, Layered v. Lean-two paths to understanding other minds.

프 > 프

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion 00	References
Formalising Menta	al Simulation				

From this, we give a skeleton formalisation of simulative belief and its framework:

$$\varphi ::= (p | \neg \varphi | (\varphi \land \varphi) | B_i \varphi | B_{i \rightarrow j}^{sh} \varphi | B_{i,j}^{sim} \varphi),$$

$$\begin{split} B_i \varphi &= i \text{ believes (proper) } \varphi, \\ B^{sh}_{i \to j} \varphi &= i \text{'s surrogate for } j, \, \varphi \text{ holds}, \\ B^{sim}_{i,j} \varphi &= \text{After introspection, } i \text{ judges that } j \text{ believes } \varphi. \end{split}$$

Introduction 00000	Philosophical Preliminary ○○○●○	Formal Preliminary 0000000	Masba 0000000000	Conclusion	References	
Formalising Mental Simulation						

With the previous resources, I now can give staged Kripke semantics:

Symbol	Construction	Gloss
Stage 1 - Pretence	$egin{array}{lll} {\it Base_j(w)} &:= \{\psi {\cal M},w \models \ {\it B_j\psi} \} \end{array}$	
<i>Stage 2 -</i> Enactment/Update	$egin{array}{l} B^{sh}_{i ightarrow j}(w) :=\ Cn(Base_j(w))*_i\ (Info_{shared}(w)) \end{array}$	AGM-style revision operates on surrogate with <i>common</i> <i>info</i> known by <i>i</i> ,
Stage 2-Relation	$wR^{sh}_{i\rightarrow j}v$ iff $v \vDash B^{sh}_{i\rightarrow j}(w)$	worlds compatible with surrogate,
<i>Stage 3 -</i> Introspection	$\mathcal{M}, oldsymbol{w} Descript{B}^{sim}_{i,j} arphi ext{ iff } \mathcal{M}, oldsymbol{w} Descript{B}^{sh}_{i o j} arphi$	<i>i</i> reads off of the surrogate output.

 $\exists \rightarrow$

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion 00	References
Formalising Menta	al Simulation				

Introduction 00000	Philosophical Preliminary ○○○○●	Formal Preliminary 0000000	Masba 0000000000	Conclusion 00	References
Formalising Menta	al Simulation				

• Layer Complexity. Too much layers are involved, making the framework inherently complex.

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion 00	References	
Formalising Mental Simulation						

- Layer Complexity. Too much layers are involved, making the framework inherently complex.
- Pretence. How exactly we do it, and what if we are wrong about the pretence?

Introduction 00000	Philosophical Preliminary ○○○○●	Formal Preliminary	Masba 0000000000	Conclusion 00	References	
Formalising Mental Simulation						

- Layer Complexity. Too much layers are involved, making the framework inherently complex.
- Pretence. How exactly we do it, and what if we are wrong about the pretence?
- Shared Information. How do we decide what are shared information, and where we ground such information?

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion	References		
Formalising Mental Simulation							

Given the stage semantics I have provided, we assume the following issues that the standard Kripke-Hintikka style semantics can face:

- Layer Complexity. Too much layers are involved, making the framework inherently complex.
- Pretence. How exactly we do it, and what if we are wrong about the pretence?
- Shared Information. How do we decide what are shared information, and where we ground such information?
- Introspection. Should full introspection be granted for simulative beliefs?

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion	References		
Formalising Mental Simulation							

Given the stage semantics I have provided, we assume the following issues that the standard Kripke-Hintikka style semantics can face:

- Layer Complexity. Too much layers are involved, making the framework inherently complex.
- Pretence. How exactly we do it, and what if we are wrong about the pretence?
- Shared Information. How do we decide what are shared information, and where we ground such information?
- Introspection. Should full introspection be granted for simulative beliefs?
- **Update**. How should we formalise *updating*, in light of new information?

Introduction Philosophical Preliminary Formal Preliminary MASBA Conclusion References

Towards Multi-Agent AGM Frameworks

In the standard **Kripke-Hintikka** style (multi-agent) epistemic/doxastic logics,

イロト イボト イヨト イヨト

Ξ

Introduction Formal Preliminary 000000

Conclusion

References

Towards Multi-Agent AGM Frameworks

In the standard **Kripke-Hintikka** style (multi-agent) epistemic/doxastic logics, an agent's beliefs are represented by an accessibility relation R on a set of possible worlds, $W = \{w_1, w_2, \ldots, w_n\}.$

A E > A E >

э

Formal Preliminary Introduction 000000

Conclusion

References

Towards Multi-Agent AGM Frameworks

In the standard **Kripke-Hintikka** style (multi-agent) epistemic/doxastic logics, an agent's beliefs are represented by an accessibility relation R on a set of possible worlds, $W = \{w_1, w_2, \ldots, w_n\}.$

"Agent *i* believes p" is true at world *w* if *p* holds in all R_i -accessible worlds from w.

* E > < E >

Formal Preliminary Introduction 000000

Conclusion

References

Towards Multi-Agent AGM Frameworks

In the standard **Kripke-Hintikka** style (multi-agent) epistemic/doxastic logics, an agent's beliefs are represented by an accessibility relation R on a set of possible worlds, $W = \{w_1, w_2, \ldots, w_n\}.$

"Agent *i* believes p" is true at world *w* if *p* holds in all R_i -accessible worlds from w.

Problems:

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Introduction Philosophical Preliminary Formal Preliminary

Masba 0000000000 Conclusion

References

Towards Multi-Agent AGM Frameworks

In the standard **Kripke-Hintikka** style (multi-agent) epistemic/doxastic logics, an agent's beliefs are represented by an accessibility relation R on a set of possible worlds, $W = \{w_1, w_2, \dots, w_n\}.$

"Agent *i* believes *p*" is true at world *w* if *p* holds in all R_i -accessible worlds from *w*.

Problems:

• Simulative Operation: No formal distinction between an agent's *actual* beliefs and *simulative* beliefs the ascriber imposes.

* E > < E >

Philosophical Preliminary Formal Preliminary Introduction 000000

Conclusion

References

Towards Multi-Agent AGM Frameworks

In the standard **Kripke-Hintikka** style (multi-agent) epistemic/doxastic logics, an agent's beliefs are represented by an accessibility relation R on a set of possible worlds, $W = \{w_1, w_2, \ldots, w_n\}.$

"Agent *i* believes p" is true at world *w* if *p* holds in all R_i -accessible worlds from w.

Problems:

- Simulative Operation: No formal distinction between an agent's actual beliefs and simulative beliefs the ascriber imposes.
- Fixed Access Relation: The agent's doxastic possibilities are typically held fixed in a single model.

A E < A E </p>

Introduction Philosophical Preliminary Formal Preliminary

Masba 0000000000 Conclusion

References

Towards Multi-Agent AGM Frameworks

In the standard **Kripke-Hintikka** style (multi-agent) epistemic/doxastic logics, an agent's beliefs are represented by an accessibility relation R on a set of possible worlds, $W = \{w_1, w_2, \dots, w_n\}.$

"Agent *i* believes *p*" is true at world *w* if *p* holds in all R_i -accessible worlds from *w*.

Problems:

- Simulative Operation: No formal distinction between an agent's *actual* beliefs and *simulative* beliefs the ascriber imposes.
- Fixed Access Relation: The agent's doxastic possibilities are typically held fixed in a single model.
- Introspection and Revision: Revising an agent's beliefs requires building a new (or globally modified) accessibility relation, or a new model altogether.

APPSA-LMPST 2025

Masba

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References		
Towards Multi-Agent AGM Frameworks							

 2 For a general introduction to AGM, see [2].

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0●00000	Masba 0000000000	Conclusion	References		
Towards Multi-Agent AGM Frameworks							
					,		

Problems:

 2 For a general introduction to AGM, see [2].

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References			
Towards Multi-Ag	Towards Multi-Agent AGM Frameworks							

Problems:

• **Simulative Operation**: Again, AGM is geared towards *genuine* beliefs, not *simulative* ones.

²For a general introduction to AGM, see [2]. \leftarrow

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References			
Towards Multi-Ag	Towards Multi-Agent AGM Frameworks							

Problems:

- **Simulative Operation**: Again, AGM is geared towards *genuine* beliefs, not *simulative* ones.
- Iterated Belief: AGM primarily handles one-shot revision. It does not prescribe how beliefs evolve across multiple or nested updates.

²For a general introduction to AGM, see [2].

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion	References		
Bi-Simulation on Planet Kripke							

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion	References		
Bi-Simulation on Planet Kripke							

Here, $u \in U$ determines the belief-independent features of the world, and b_i is a set of *worlds* validating agent *i*'s belief state.

References							
Bi-Simulation on Planet Kripke							

Here, $u \in U$ determines the belief-independent features of the world, and b_i is a set of *worlds* validating agent *i*'s belief state.

Problem(s):

Introduction 00000	Philosophical Preliminary	Formal Preliminary ○○●○○○○	Masba 0000000000	Conclusion 00	References			
Bi-Simulation on	Bi-Simulation on Planet Kripke							

Here, $u \in U$ determines the belief-independent features of the world, and b_i is a set of *worlds* validating agent *i*'s belief state.

Problem(s):

• b_i is a set of *worlds*, which may even contain *w* itself.

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References				
Bi-Simulation on	Bi-Simulation on Planet Kripke								

Here, $u \in U$ determines the belief-independent features of the world, and b_i is a set of *worlds* validating agent *i*'s belief state.

Problem(s):

• b_i is a set of *worlds*, which may even contain *w* itself. **Solutions**:

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References
Bi-Simulation on	Planet Kripke				

Here, $u \in U$ determines the belief-independent features of the world, and b_i is a set of *worlds* validating agent *i*'s belief state.

Problem(s):

• b_i is a set of *worlds*, which may even contain *w* itself. Solutions:

• Aczel's Anti-Foundation Axiom [1, 1988](non-wellfounded set theory).

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References
Bi-Simulation on P	lanet Kripke				

Here, $u \in U$ determines the belief-independent features of the world, and b_i is a set of *worlds* validating agent *i*'s belief state.

Problem(s):

• b_i is a set of *worlds*, which may even contain *w* itself.

Solutions:

- Aczel's Anti-Foundation Axiom [1, 1988](non-wellfounded set theory).
- *Bisimilarity* to the Kripke-Hintikka model.

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References
Cantwell's Appro	ach				
,					

Cantwell [4, 2005] (and [5, 2007]) adopted Gerbrandy and Groeneveld's idea but developed a framework that does not rely on *non-wellfounded sets*. Crucially, the framework preserves a *modular representation* of possible worlds as (n + 1)-tuples, $\langle u, b_1, b_2, \ldots, b_n \rangle$, where *u* determines belief-independent facts, and b_1, \ldots, b_n represent each agent's belief state.

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References
Cantwell's Approa	ach				

Cantwell [4, 2005] (and [5, 2007]) adopted Gerbrandy and Groeneveld's idea but developed a framework that does not rely on *non-wellfounded sets*. Crucially, the framework preserves a *modular representation* of possible worlds as (n + 1)-tuples, $\langle u, b_1, b_2, \ldots, b_n \rangle$, where *u* determines belief-independent facts, and b_1, \ldots, b_n represent each agent's belief state.

This neatly represents *local changes* in the belief state of a single agent, e.g. from $\langle u, b_1, b_2, b_3 \rangle$ to $\langle u, b'_1, b_2, b_3 \rangle$, without altering u (the belief-external facts) or other agents' states.

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References
n-Agent Framewor	'k <i>F</i>				

E> E

<i>n</i> -Agent Framework \mathcal{F}	Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References
	<i>n</i> -Agent Framewo	rk <i>F</i>				

 \mathcal{A} is the set of agents, labelled $1, \ldots, n \in \mathcal{A}$,

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References
n-Agent Framewo	ork ${\cal F}$				

 $\mathcal A$ is the set of agents, labelled $1,\ldots,n\in\mathcal A$,

U is the set of belief-independent states of the world,

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References
n-Agent Framewor	κ <i>F</i>				

 $\mathcal A$ is the set of agents, labelled $1,\ldots,n\in\mathcal A$,

- U is the set of belief-independent states of the world,
- \mathcal{B}_i is the set of possible belief states for agent i,³

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References
n-Agent Framewo	rk ${\cal F}$				

 $\mathcal A$ is the set of agents, labelled $1,\ldots,n\in\mathcal A$,

U is the set of belief-independent states of the world,

 \mathcal{B}_i is the set of possible belief states for agent i,³

A possible world $w \in W$ is an ordered (n + 1)-tuple

 $w = \langle u, b_1, \dots, b_n \rangle$, with $u \in U$, and $b_i \in \mathcal{B}_i$ for each i,

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References
n-Agent Framewo	rk ${\cal F}$				

 $\mathcal A$ is the set of agents, labelled $1,\ldots,n\in\mathcal A$,

U is the set of belief-independent states of the world,

 \mathcal{B}_i is the set of possible belief states for agent i,³

A possible world $w \in W$ is an ordered (n + 1)-tuple

 $w = \langle u, b_1, \ldots, b_n \rangle$, with $u \in U$, and $b_i \in \mathcal{B}_i$ for each i,

C is a function returning, for any agent *i* and $b \in B_i$, a set of possible worlds.

³Belief states are *not* possible worlds, but are taken to be independent entities. $(\Box \mapsto \langle \Box \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle)$

00000 000	0000000	0000000000	Conclusion	References
<i>n</i> -Agent Framework ${\cal F}$				

For a world
$$w = \langle u, b_1, \ldots, b_n \rangle$$
,

wst(w) = u (gives the *world-state* of *w*), $bst_i(w) = b_i$ (gives the *belief state* of agent *i* in *w*).

Introduction 00000	Philosophical Preliminary	Formal Preliminary ○○○○○●○	Masba 0000000000	Conclusion 00	References
<i>n</i> -Agent Framew	ork ${\cal F}$				

For a world
$$w = \langle u, b_1, \ldots, b_n \rangle$$
,

$$wst(w) = u$$
 (gives the *world-state* of w),
 $bst_i(w) = b_i$ (gives the *belief state* of agent *i* in w).

A full-introspection postulate:

If
$$b \in \mathcal{B}_i$$
 and $w \in \mathcal{C}(b)$, then $bst_i(w) = b$.

E

Introduction 00000	Philosophical Preliminary	Formal Preliminary ○○○○○●○	Masba 0000000000	Conclusion 00	References
n-Agent Framewo	ork ${\cal F}$				

For a world
$$w = \langle u, b_1, \ldots, b_n \rangle$$
,

$$wst(w) = u$$
 (gives the *world-state* of w),
 $bst_i(w) = b_i$ (gives the *belief state* of agent *i* in w).

A full-introspection postulate:

If
$$b \in \mathcal{B}_i$$
 and $w \in \mathcal{C}(b)$, then $bst_i(w) = b$.

An *n*-agent frame \mathcal{F} can be defined as a tuple

 $\langle W, U, \{\mathcal{B}_i\}_{1 \leq i \leq n}, \mathcal{C} \rangle.$

Introduction 00000	Philosophical Preliminary	Formal Preliminary ○○○○○●○	${ m Masba}$ 000000000	Conclusion 00	References		
<i>n</i> -Agent Framework ${\cal F}$							

For a world
$$w = \langle u, b_1, \ldots, b_n \rangle$$
,

$$wst(w) = u$$
 (gives the *world-state* of w),
 $bst_i(w) = b_i$ (gives the *belief state* of agent *i* in w).

A full-introspection postulate:

If
$$b \in \mathcal{B}_i$$
 and $w \in \mathcal{C}(b)$, then $bst_i(w) = b$.

An *n*-agent frame \mathcal{F} can be defined as a tuple

$$\langle W, U, \{\mathcal{B}_i\}_{1\leq i\leq n}, \mathcal{C} \rangle.$$

In his 2005 paper, Cantwell showed \mathcal{F} can be represented by a standard Kripke system with *n* accessibility relations.

Introduction 00000	Philosophical Preliminary	Formal Preliminary ○○○○○○	Masba 0000000000	Conclusion	References		
n-Agent Framework ${\cal F}$							

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References		
n-Agent Framework ${\cal F}$							

Expansion: $+_i(\phi, w) = w'$, adding ϕ to agent *i*'s beliefs in w, moving to a new world w'.

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion 00	References		
n-Agent Framework ${\cal F}$							

Expansion: $+_i(\phi, w) = w'$, adding ϕ to agent *i*'s beliefs in w, moving to a new world w'.

Selection: $\gamma_b(\phi) \subseteq \phi$, choosing the most plausible ϕ -worlds consistent with b_i ,

Introduction 00000	Philosophical Preliminary	Formal Preliminary ○○○○○●	Masba 0000000000	Conclusion 00	References		
<i>n</i> -Agent Framework \mathcal{F}							

Expansion: $+_i(\phi, w) = w'$, adding ϕ to agent *i*'s beliefs in w, moving to a new world w'.

Selection: $\gamma_b(\phi) \subseteq \phi$, choosing the most plausible ϕ -worlds consistent with b_i ,

Common Learning: $\bigoplus_N(\phi, w)$, for a group $N \subseteq \{1, \ldots, n\}$, so they all learn ϕ , each updating their own beliefs.

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion	References		
<i>n</i> -Agent Framework ${\cal F}$							
		,					

Following the AGM tradition, \mathcal{F} incorporates agent-dependent belief dynamics and *common dynamics*.

Expansion: $+_i(\phi, w) = w'$, adding ϕ to agent *i*'s beliefs in w, moving to a new world w'.

Selection: $\gamma_b(\phi) \subseteq \phi$, choosing the most plausible ϕ -worlds consistent with b_i ,

Common Learning: $\bigoplus_N(\phi, w)$, for a group $N \subseteq \{1, \ldots, n\}$, so they all learn ϕ , each updating their own beliefs.

The modular internal-world semantics for common learning is then combined with an AGM-style revision approach.

Philosophical Preliminary

Formal Preliminary

Masba ••••• onclusion

References

Introducing the Framework

MASBA is an extension of \mathcal{F} . The key addition is the *simulation layer*—"what j would believe if j were i":

Э

20 / 35

イロト イボト イヨト イヨト

Introducing the Framework

MASBA is an extension of \mathcal{F} . The key addition is the *simulation layer*—"what j would believe if j were i":

 $b^{sim}_{\langle i,j
angle}\in\mathcal{B}^{sim}_{\langle i,j
angle},$

which denotes i's simulative belief states about j. In principle, when thinking of other agents we often simulate others based on the information that we already possess for ourselves:

$$w \xrightarrow{\operatorname{Copy}(b_j)} w' \xrightarrow{\mathcal{B}_{\langle i,j \rangle}^{sim}} w''.$$

Introducing the Framework

MASBA is an extension of \mathcal{F} . The key addition is the *simulation layer*—"what *j* would believe if *j* were *i*":

 $b^{sim}_{\langle i,j
angle}\in\mathcal{B}^{sim}_{\langle i,j
angle},$

which denotes i's simulative belief states about j. In principle, when thinking of other agents we often simulate others based on the information that we already possess for ourselves:

$$W \xrightarrow{\operatorname{Copy}(b_j)} W' \xrightarrow{\mathcal{B}_{\langle i,j \rangle}^{sim}} W''.$$

In addition to this, we would need what I shall call a *shared belief state*:

Introduction Philosophical Preliminary Formal Preliminary MASBA Conclusion

Introducing the Framework

MASBA is an extension of \mathcal{F} . The key addition is the *simulation layer*—"what j would believe if j were i":

 $b^{sim}_{\langle i,j
angle}\in\mathcal{B}^{sim}_{\langle i,j
angle},$

which denotes i's simulative belief states about j. In principle, when thinking of other agents we often simulate others based on the information that we already possess for ourselves:

$$w \xrightarrow{\operatorname{Copy}(b_j)} w' \xrightarrow{\mathcal{B}_{\langle i,j \rangle}^{sim}} w''.$$

In addition to this, we would need what I shall call a *shared belief state*:

$$b^{sh}_{\langle j,i
angle}\in\mathcal{B}^{sh}_{\langle j,i
angle},$$

denoting *shared states* between *j* and *i*, *i.e. i*'s belief about *j*'s belief. Informally, "*j* believes that *i* believes such-and-such".

∃ ► < ∃ ►</p>

References

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ooooooooo	Conclusion 00	References
Introducing the F	ramework				

By introducing $\mathcal{B}_{\langle j,i\rangle}^{sh}$ and $\mathcal{B}_{\langle i,j\rangle}^{sim}$, the framework *localises* both shared and simulative beliefs by encapsulating them in separate compartments, preserving the integrity of each agent's actual belief state \mathcal{B}_i .

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 000000000	Conclusion 00	References
Introducing the	Framework				

By introducing $\mathcal{B}_{\langle j,i\rangle}^{sh}$ and $\mathcal{B}_{\langle i,j\rangle}^{sim}$, the framework *localises* both shared and simulative beliefs by encapsulating them in separate compartments, preserving the integrity of each agent's actual belief state \mathcal{B}_i .

With this, we can define MASBA:

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 000000000	Conclusion 00	References
Introducing the	Framework				
,			,		,

By introducing $\mathcal{B}_{\langle j,i\rangle}^{sh}$ and $\mathcal{B}_{\langle i,j\rangle}^{sim}$, the framework *localises* both shared and simulative beliefs by encapsulating them in separate compartments, preserving the integrity of each agent's actual belief state \mathcal{B}_i .

With this, we can define $\operatorname{MASBA:}$

Definition (1) MASBA is a tuple $\langle W, U, \{\mathcal{B}_i\}_{1 \le i \le n}, \{\mathcal{B}^{sh}\}_{\langle j,i \rangle (1 \le i,j \le n | i \ne j)}, \{\mathcal{B}^{sim}\}_{\langle i,j \rangle (1 \le i,j \le n | i \ne j)}, \mathcal{C} \rangle.$

Introducing the Framework

As in \mathcal{F} , MASBA can also be represented in a standard Kripke framework via binary accessibility relations:

Э

Philosophical Preliminary

Formal Preliminary

Masba 0000000000 Conclusion

References

Introducing the Framework

As in \mathcal{F} , MASBA can also be represented in a standard Kripke framework via binary accessibility relations:

Definition (2)

MASBA generates accessibility relations R_i $(1 \le i \le n)$, where R_i is a binary relation on W such that

$$wR_iw \iff w \in \mathcal{C}(\mathsf{bst}_i(v)).$$

∃ ► < ∃ ►</p>

Philosophical Preliminary

Formal Preliminary

Masba 0000000000 Conclusion

References

Introducing the Framework

As in \mathcal{F} , MASBA can also be represented in a standard Kripke framework via binary accessibility relations:

Definition (2)

MASBA generates accessibility relations R_i $(1 \le i \le n)$, where R_i is a binary relation on W such that

$$vR_iw \iff w \in \mathcal{C}(\mathsf{bst}_i(v)).$$

Simulative (and shared) belief states can likewise be represented through analogous accessibility relations:

4 ∃ ≥ < 3 ≥ </p>

hilosophical Preliminary

Formal Preliminary

Masba 0000000000 Conclusion

References

Introducing the Framework

As in \mathcal{F} , MASBA can also be represented in a standard Kripke framework via binary accessibility relations:

Definition (2)

MASBA generates accessibility relations R_i $(1 \le i \le n)$, where R_i is a binary relation on W such that

$$vR_iw \iff w \in \mathcal{C}(\mathsf{bst}_i(v)).$$

Simulative (and shared) belief states can likewise be represented through analogous accessibility relations:

Definition (3)

In MASBA, the accessibility relation for simulative beliefs $R_{\langle i,j\rangle}$ is a binary relation on W:

$$v R^{sim}_{\langle i,j \rangle} w \quad \Longleftrightarrow \quad w \in \mathcal{C} ig(\mathsf{bst}^{sim}_{\langle i,j
angle} (v) ig).$$

APPSA-LMPST 2025

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○●○○○○○○	Conclusion 00	References
The Language of	Masba				

The language of MASBA is the usual classical propositional language \mathcal{L} , enhanced with belief operators B_i , $B_{(i,i)}^{sh}$, $B_{(i,i)}^{sim}$.

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 000€000000	Conclusion 00	References
The Language of 1	Masba				

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 000€000000	Conclusion 00	References
The Language of 1	Masba				

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

• $w \vDash p$ iff $wst(w) \in V(p)$.

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 000€000000	Conclusion 00	References
The Language of 1	Masba				

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

- $w \vDash p$ iff $wst(w) \in V(p)$.
- $e w \vDash \phi \land \psi \text{ iff } w \vDash \phi \text{ and } w \vDash \psi.$

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 000€000000	Conclusion 00	References
The Language of 1	Masba				

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

- $w \vDash p$ iff wst $(w) \in V(p)$.
- **2** $w \models \phi \land \psi$ iff $w \models \phi$ and $w \models \psi$.
- $w \vDash \neg \phi \text{ iff } w \nvDash \phi.$

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 000€000000	Conclusion 00	References
The Language of 1	Masba				

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

•
$$w \vDash p$$
 iff $wst(w) \in V(p)$.

$$w \vDash \neg \phi \text{ iff } w \nvDash \phi.$$

• $w \vDash B_i \phi$ iff for each $w' \in C(\text{bst}_i(w)), w' \vDash \phi$.

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 000€000000	Conclusion 00	References
The Language of 1	Masba				

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

•
$$w \vDash p$$
 iff $wst(w) \in V(p)$.

$$w \vDash \neg \phi \text{ iff } w \nvDash \phi.$$

• $w \vDash B_i \phi$ iff for each $w' \in C(\text{bst}_i(w)), w' \vDash \phi$.

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 000€000000	Conclusion	References
The Language of I	Masba				

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

•
$$w \vDash p$$
 iff $wst(w) \in V(p)$.

$$one w \models \phi \land \psi \text{ iff } w \models \phi \text{ and } w \models \psi.$$

3
$$w \models \neg \phi$$
 iff $w \nvDash \phi$.

•
$$w \vDash B_i \phi$$
 iff for each $w' \in C(\text{bst}_i(w)), w' \vDash \phi$.

$$\mathfrak{D} \ w \vDash B_{\langle i,j \rangle}^{sim} \phi \text{ iff for each } w' \in \mathcal{C} \big(\mathsf{bst}_{\langle i,j \rangle}^{sim}(w) \big), \ w' \vDash \phi.$$

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 000●000000	Conclusion 00	References
The Language of MASBA					

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba 0000€00000	Conclusion 00	References
Axioms					

The deductive system of MASBA consists of a **KD45** system for the operator B_i , and a **K**, **4**, **5** for $B^{sh}_{\langle j,i \rangle}$; lastly, **K** only for $B^{sim}_{\langle i,j \rangle}$:

Tautologies,

$$(K) \ B_i(\phi \to \psi) \to (B_i\phi \to B_i\psi), \text{ similarly for } B^{sh}_{\langle i,j \rangle} \text{ and } B^{sim}_{\langle i,j \rangle},$$

- $(S) \neg (B_i \phi \land B_i \neg \phi),$
- $(5) \neg B_i \phi \rightarrow B_i \neg B_i \phi.$

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000€00000	Conclusion 00	References
Axioms					

The deductive system of MASBA consists of a **KD45** system for the operator B_i , and a **K**, **4**, **5** for $B_{(i,i)}^{sh}$; lastly, **K** only for $B_{(i,i)}^{sim}$:

Tautologies,

$$(K) \ B_i(\phi \to \psi) \to (B_i \phi \to B_i \psi), \text{ similarly for } B^{sh}_{\langle i,j \rangle} \text{ and } B^{sim}_{\langle i,j \rangle},$$

$$(S) \neg (B_i \phi \land B_i \neg \phi),$$

$$(4) B_i \phi \rightarrow B_i B_i \phi,$$

$$(5) \neg B_i \phi \rightarrow B_i \neg B_i \phi.$$

The framework is *sound* and *complete*⁴ showing that MASBA is fully representable in a standard Kripke-Hintikka system.

⁴A proof can be constructed through a canonical model. The complete proof will be appeared on my website. $\Box \rightarrow \langle \Box \rangle \land \langle \Box \rangle \land \langle \Box \rangle$

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○●○○○○	Conclusion	References
Belief Dynamics					

From now on, we will focus on the simulative aspects of $\rm MASBA.$

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion 00	References
Belief Dynamics					

From now on, we will focus on the *simulative aspects* of MASBA.

AGM revision operation, denoted by * defined as Levi Identity,

$$(L) \qquad K * \varphi := (K - \neg \varphi) + \varphi,$$

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○●○○○○	Conclusion 00	References
Belief Dynamics					

From now on, we will focus on the *simulative aspects* of MASBA.

AGM revision operation, denoted by * defined as Levi Identity,

$$(L) \qquad K * \varphi := (K - \neg \varphi) + \varphi,$$

Three AGM operations will be introduced to suit MASBA's need:

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○●○○○○	Conclusion	References
Belief Dynamics					

From now on, we will focus on the *simulative aspects* of MASBA.

AGM revision operation, denoted by * defined as Levi Identity,

$$(L) \qquad K * \varphi := (K - \neg \varphi) + \varphi,$$

Three AGM operations will be introduced to suit MASBA's need:

- Expansion,
- Contraction (by selection),
- 8 Revision.

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba ○○○○○○●○○○	Conclusion	References
Belief Dynamics					

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba ○○○○○○●○○○	Conclusion	References
Belief Dynamics					

Conclusion

References

Belief Dynamics

Expansion. For a multi-agent, multi-compartment setup in MASBA, the expansion + is defined:

$$+^{sim}_{\langle i,j
angle}(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i
angle}(w))=w',$$

where:

A E F A E F

Э

26 / 35

Belief Dynamics

Expansion. For a multi-agent, multi-compartment setup in MASBA, the expansion + is defined:

$$+_{\langle i,j\rangle}^{sim}(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w))=w',$$

where:

$$\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i \rangle}(w)) = w', \text{ and } \|\varphi\| \sqsubseteq w',$$

Э

26 / 35

Belief Dynamics

Expansion. For a multi-agent, multi-compartment setup in MASBA, the expansion + is defined:

$$+_{\langle i,j
angle}^{sim}(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i
angle}(w))=w',$$

where:

$$\begin{split} \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) &= w', \, \mathsf{and} \, \|\varphi\| \sqsubseteq w', \\ \mathsf{bst}^{sim}_{\langle i,j\rangle}(w') &= \mathsf{bst}^{sim}_{\langle i,j\rangle}(w) \, \cup \, \mathsf{bst}^{sh}_{\langle j,i\rangle}(w), \end{split}$$

Э

26 / 35

Belief Dynamics

Expansion. For a multi-agent, multi-compartment setup in MASBA, the expansion + is defined:

$$+_{\langle i,j\rangle}^{sim}(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w))=w',$$

where:

$$\begin{split} \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) &= w', \text{ and } \|\varphi\| \sqsubseteq w', \\ \mathsf{bst}^{sim}_{\langle i,j\rangle}(w') &= \mathsf{bst}^{sim}_{\langle i,j\rangle}(w) \cup \mathsf{bst}^{sh}_{\langle j,i\rangle}(w), \\ \mathsf{wst}(w') &= \mathsf{wst}(w), \text{ and,} \end{split}$$

Э

26 / 35

Belief Dynamics

Expansion. For a multi-agent, multi-compartment setup in MASBA, the expansion + is defined:

$$+_{\langle i,j\rangle}^{sim}(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w))=w',$$

where:

$$\begin{aligned} \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) &= w', \text{ and } \|\varphi\| \sqsubseteq w', \\ \mathsf{bst}^{sim}_{\langle i,j\rangle}(w') &= \mathsf{bst}^{sim}_{\langle i,j\rangle}(w) \cup \mathsf{bst}^{sh}_{\langle j,i\rangle}(w), \\ \mathsf{wst}(w') &= \mathsf{wst}(w), \text{ and,} \\ \mathsf{bst}(w') &= \mathsf{bst}(w), \text{ for } k \neq i,j. \end{aligned}$$

Э

26 / 35

Introduction Philosophical Preliminary Formal Preliminary MASBA Conclusion References

Belief Dynamics

Expansion. For a multi-agent, multi-compartment setup in MASBA, the expansion + is defined:

$$+_{\langle i,j\rangle}^{sim}(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w))=w',$$

where:

$$\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) = w', \text{ and } \|\varphi\| \sqsubseteq w',$$

$$\mathsf{bst}^{sim}_{\langle i,j\rangle}(w') = \mathsf{bst}^{sim}_{\langle i,j\rangle}(w) \cup \mathsf{bst}^{sh}_{\langle j,i\rangle}(w),$$

$$\mathsf{wst}(w') = \mathsf{wst}(w), \text{ and,}$$

$$\mathsf{bst}(w') = \mathsf{bst}(w), \text{ for } k \neq i, j.$$

A simple expansion occurs as

$$\mathcal{C}(\mathcal{C}(\mathsf{bst}^{sim}_{\langle i,j\rangle}(w)) + \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w))) \\ = \left\{ +^{sim}_{\langle i,j\rangle}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) \,|\, w \sqsubseteq \mathcal{C}(\mathsf{bst}^{sim}_{\langle i,j\rangle}(w)) \right\}$$

ヨト イヨト

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○○○●○○	Conclusion 00	References
Belief Dynamics					

Contraction. In MASBA, contraction operation given by:

< ∃ >

Э

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○○○●○○	Conclusion	References
Belief Dynamics					

Contraction. In MASBA, contraction operation given by:

$$\dot{-}_{\langle i,j\rangle}^{sim} \big(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) = w',$$

is defined by a selection function γ , such that:

$$\gamma_{(b_{\langle i,j\rangle}^{sim})}(\mathcal{C}(\mathsf{bst}_{\langle j,i\rangle}^{sh}(w)) \sqsubseteq \mathcal{C}(\mathsf{bst}_{\langle j,i\rangle}^{sh}(w)),$$

meaning, that from $\|\varphi\| \sqsubseteq C(\text{bst}^{sh}_{\langle j,i \rangle}(w))$, keep only those worlds consistent with $b^{sh}_{\langle j,i \rangle}$:

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba ○○○○○○○●○○	Conclusion	References
Belief Dynamics					

Contraction. In MASBA, contraction operation given by:

$$\dot{-}_{\langle i,j\rangle}^{sim} \big(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) = w',$$

is defined by a selection function γ , such that:

$$\gamma_{(b_{\langle i,j\rangle}^{sin})}(\mathcal{C}(\mathsf{bst}_{\langle j,i\rangle}^{sh}(w)) \sqsubseteq \mathcal{C}(\mathsf{bst}_{\langle j,i\rangle}^{sh}(w)),$$

meaning, that from $\|\varphi\| \sqsubseteq C(\text{bst}^{sh}_{\langle j,i \rangle}(w))$, keep only those worlds consistent with $b^{sh}_{\langle i,i \rangle}$:

• If
$$\mathcal{C}(\text{bst}_{\langle i,j \rangle}^{sim}(w)) \cup \mathcal{C}(\text{bst}_{\langle j,i \rangle}^{sh}(w)) = \emptyset$$
, then,
• $\gamma_{(b_{\langle i,j \rangle}^{sim})}(\mathcal{C}(\text{bst}_{\langle j,i \rangle}^{sh}(w)) = \mathcal{C}(\text{bst}_{\langle j,i \rangle}^{sh}(w)) \cup \mathcal{C}(\text{bst}_{\langle i,j \rangle}^{sim}(w)).$

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba ○○○○○○○●○○	Conclusion	References
Belief Dynamics					

Contraction. In MASBA, contraction operation given by:

$$\dot{-}_{\langle i,j \rangle}^{sim} (\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i \rangle}(w)) = w',$$

is defined by a selection function γ , such that:

$$\gamma_{(b^{sim}_{\langle i,j\rangle})}(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) \sqsubseteq \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)),$$

meaning, that from $\|\varphi\| \sqsubseteq C(\text{bst}^{sh}_{\langle j,i \rangle}(w))$, keep only those worlds consistent with $b^{sh}_{\langle i,i \rangle}$:

• If
$$\mathcal{C}(\text{bst}_{\langle i,j \rangle}^{sim}(w)) \cup \mathcal{C}(\text{bst}_{\langle j,i \rangle}^{sh}(w)) = \emptyset$$
, then,
• $\gamma_{(b_{\langle i,j \rangle}^{sim})}(\mathcal{C}(\text{bst}_{\langle j,i \rangle}^{sh}(w))) = \mathcal{C}(\text{bst}_{\langle j,i \rangle}^{sh}(w)) \cup \mathcal{C}(\text{bst}_{\langle i,j \rangle}^{sim}(w)).$

When multiple compartments take part simultaneously, we can modify this selection function accordingly.

Introduction 00000	Philosophical Preliminary	Formal Preliminary	Masba ○○○○○○○○○	Conclusion	References
Belief Dynamics					

Revision. The final step in simulative belief ascription is revision,

프 > 프

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○○○○○	Conclusion 00	References
Belief Dynamics					

Revision. The final step in *simulative belief ascription* is revision, $*_{\langle i,i \rangle}^{sim} (C(bst_{\langle i,i \rangle}^{sh}(w)) = w'$, defined by the Levi Identity:

∃ > < ∃ >

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○○○○○	Conclusion 00	References
Belief Dynamics					

Revision. The final step in *simulative belief ascription* is revision, $*_{\langle i,i \rangle}^{sim} (C(\text{bst}_{\langle i,i \rangle}^{sh}(w)) = w'$, defined by the Levi Identity:

$$egin{aligned} \mathcal{C}(\mathsf{bst}^{sim}_{\langle i,j
angle}(w))*_{\langle i,j
angle}\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i
angle}(w))\ &:=\left(\gamma_{(b^{sim}_{\langle i,j
angle})}ig(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i
angle}(w))ig)+^{sim}_{\langle i,j
angle}\mathcal{C}ig(\mathsf{bst}^{sh}_{\langle j,i
angle}(w)ig), \end{aligned}
ight.$$

where,

→ < Ξ >

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○○○○●○	Conclusion 00	References
Belief Dynamics					

Revision. The final step in *simulative belief ascription* is revision, $*_{\langle i,i \rangle}^{sim} (C(bst_{\langle j,i \rangle}^{sh}(w)) = w'$, defined by the Levi Identity:

$$\begin{split} \mathcal{C}(\mathsf{bst}^{sim}_{\langle i,j\rangle}(w)) *_{\langle i,j\rangle} \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) \\ &:= \left(\gamma_{(b^{sim}_{\langle i,j\rangle})} \big(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) \big) + {}^{sim}_{\langle i,j\rangle} \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) \big), \end{split}$$

where,

 $\|\varphi\| \subseteq \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,u\rangle}(w)),$

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○○○○●○	Conclusion 00	References
Belief Dynamics					

Revision. The final step in *simulative belief ascription* is revision, $*_{\langle i,j \rangle}^{sim} (C(bst_{\langle j,i \rangle}^{sh}(w)) = w'$, defined by the Levi Identity:

$$\begin{split} \mathcal{C}(\mathsf{bst}^{sim}_{\langle i,j\rangle}(w)) *_{\langle i,j\rangle} \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) \\ &:= \left(\gamma_{(b^{sim}_{\langle i,j\rangle})} \big(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) \big) + {}^{sim}_{\langle i,j\rangle} \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) \big), \end{split}$$

where,

$$\|\varphi\| \sqsubseteq C(\mathsf{bst}^{sh}_{\langle j,u \rangle}(w)),$$

wst $(w) = \mathsf{wst}(w'),$

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○○○○○	Conclusion 00	References
Belief Dynamics					

Revision. The final step in *simulative belief ascription* is revision, $*_{\langle i,j \rangle}^{sim} (C(bst_{\langle j,i \rangle}^{sh}(w)) = w'$, defined by the Levi Identity:

$$\mathcal{C}(\mathsf{bst}^{sim}_{\langle i,j
angle}(w)) *_{\langle i,j
angle} \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i
angle}(w)) \\ := \left(\gamma_{(b^{sim}_{\langle i,j
angle})} (\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i
angle}(w))
ight) +^{sim}_{\langle i,j
angle} \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i
angle}(w)),$$

where,

$$\begin{split} \|\varphi\| &\sqsubseteq \mathcal{C}\big(\mathsf{bst}^{sh}_{\langle j, u \rangle}(w)\big),\\ \mathsf{wst}(w) &= \mathsf{wst}(w'),\\ \mathsf{bst}_k(w) &= \mathsf{bst}(w') \text{ for } k \neq i, j, \end{split}$$

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○○○○○	Conclusion 00	References
Belief Dynamics					

Revision. The final step in *simulative belief ascription* is revision, $*_{\langle i,i \rangle}^{sim} (C(\text{bst}_{\langle j,i \rangle}^{sh}(w)) = w'$, defined by the Levi Identity:

$$\begin{split} \mathcal{C}(\mathsf{bst}^{sim}_{\langle i,j\rangle}(w)) *_{\langle i,j\rangle} \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) \\ &:= \left(\gamma_{(b^{sim}_{\langle i,j\rangle})} \big(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) \big) + {}^{sim}_{\langle i,j\rangle} \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w)) \big), \end{split}$$

where,

$$\begin{split} \|\varphi\| &\sqsubseteq \mathcal{C}\big(\mathsf{bst}_{\langle j, u \rangle}^{sh}(w)\big),\\ \mathsf{wst}(w) &= \mathsf{wst}(w'),\\ \mathsf{bst}_k(w) &= \mathsf{bst}(w') \text{ for } k \neq i, j,\\ \mathsf{bst}_{\langle i, j \rangle}^{sim}(w') &= \big(\mathsf{bst}_{\langle i, j \rangle}^{sim}(w)\big) * \mathcal{C}\big(\mathsf{bst}_{\langle j, i \rangle}^{sh}\big). \end{split}$$

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 000000000	Conclusion 00	References
Belief Dynamics					

▶ < ∃ >

E

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○○○○○	Conclusion 00	References
Belief Dynamics					

 $*_{\langle i,j\rangle}^{sim}$ in MASBA is a *simulative belief revision* operation, by taking $C(bst_{\langle i,i\rangle}^{sh})$ with a minimal revision of $bst_{\langle i,j\rangle}^{sim}(w)$:

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○○○○○○	Conclusion	References
Belief Dynamics					

 $*_{\langle i,j\rangle}^{sim}$ in MASBA is a *simulative belief revision* operation, by taking $C(bst_{\langle j,i\rangle}^{sh})$ with a minimal revision of $bst_{\langle i,j\rangle}^{sim}(w)$:

$$\begin{split} \mathcal{C}\big(\mathsf{bst}^{sim}_{\langle i,j\rangle}(w) * \mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle})\big) \\ &= \Big\{ \; *^{sim}_{\langle i,j\rangle}\big(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}) \mid w \in \gamma_{(b^{sim}_{\langle i,j\rangle})}\big(\mathcal{C}(\mathsf{bst}^{sh}_{\langle j,i\rangle}(w))\big) \Big\}, \end{split}$$

Introduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba ○○○○○○○○○○	Conclusion	References
Belief Dynamics					

 $*_{\langle i,j\rangle}^{sim}$ in MASBA is a *simulative belief revision* operation, by taking $C(bst_{\langle j,i\rangle}^{sh})$ with a minimal revision of $bst_{\langle i,j\rangle}^{sim}(w)$:

$$egin{aligned} &\mathcal{C}ig(extsf{bst}_{\langle i,j
angle}^{sim}(w)*\mathcal{C}ig(extsf{bst}_{\langle j,i
angle}^{sh}ig)ig) \ &= \Big\{ \ *^{sim}_{\langle i,j
angle}ig(\mathcal{C}ig(extsf{bst}_{\langle j,i
angle}^{sh}ig) \mid w\in \gamma_{ig(extsf{bst}_{\langle i,j
angle})}ig(\mathcal{C}ig(extsf{bst}_{\langle j,i
angle}^{sh}(w)ig)ig)\Big\}, \end{aligned}$$

Here, the agent j revises the simulative belief state $b^{sim}_{\langle i,j\rangle}$ with respect to shared belief state of j to i.

ntroduction 00000	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion ●○	References

$$w = \langle u, b_{i(1 \le i \le n)}, b^{sh}_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)}, b^{sim}_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)} \rangle,$$

 $M \ensuremath{\mathsf{ASBA}}$ supports:

ntroduction 20000	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion ●○	References

$$w = \langle u, b_{i(1 \le i \le n)}, b^{sh}_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)}, b^{sim}_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)} \rangle,$$

MASBA supports:

• Multiple doxastic compartments: b, b^{sh}, b^{sim} ,

ntroduction	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion ●O	References

$$w = \langle u, b_{i(1 \le i \le n)}, b^{sh}_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)}, b^{sim}_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)} \rangle,$$

 $M \ensuremath{\mathsf{ASBA}}$ supports:

- Multiple doxastic compartments: b, b^{sh}, b^{sim} ,
- Local, modular updates rather than global ones,

ntroduction	Philosophical Preliminary	Formal Preliminary	Masba 0000000000	Conclusion ●O	References

$$w = \langle u, b_{i(1 \le i \le n)}, b^{sh}_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)}, b^{sim}_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)} \rangle,$$

 $M \ensuremath{\mathsf{ASBA}}$ supports:

- Multiple doxastic compartments: b, b^{sh}, b^{sim} ,
- Local, modular updates rather than global ones,
- Oistinguishing between common beliefs and simulative beliefs,

troduction	Philosophical Preliminary	Formal Preliminary 0000000	Masba 0000000000	Conclusion ●O	References

$$w = \langle u, b_{i(1 \le i \le n)}, b^{sh}_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)}, b^{sim}_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)} \rangle,$$

 $M \ensuremath{\mathsf{ASBA}}$ supports:

- Multiple doxastic compartments: b, b^{sh}, b^{sim} ,
- Local, modular updates rather than global ones,
- O Distinguishing between common beliefs and simulative beliefs,
- Incorporating AGM-style revision for simulative belief ascriptions, better suited to dominating view in *mental simulation*.

Introduction Philosophical Preliminary Formal Preliminary MASBA Conclusion Referen 00000 0000000000000000000000000000000	ices
---	------

Thank you!

Ξ

31 / 35

イロト イポト イヨト イヨト

Introduction Philosophical Preliminary Formal Preliminary MASBA Conclusion References

- Peter Aczel. Non-Well-Founded Sets. Number no. 14 in CSLI Lecture Notes. Center for the Study of Language and Information, 1988. ISBN 978-0-937073-21-6 978-0-937073-22-3.
- [2] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the Logic of Theory Change: Partial Meet Contraction and Revision Functions. In Horacio Arló-Costa, Vincent F. Hendricks, and Johan Van Benthem, editors, *Readings in Formal Epistemology*, pages 195–217. Springer International Publishing, 2016. ISBN 978-3-319-20450-5 978-3-319-20451-2. doi: 10.1007/978-3-319-20451-2_13.
- [3] G. Aucher. Generalizing AGM to a multi-agent setting. Logic Journal of IGPL, 18(4):530–558, 2010-08-01. ISSN 1367-0751, 1368-9894. doi: 10.1093/jigpal/jzp037.

Philosophical Preliminary

Formal Preliminary

Masba 0000000000 Conclusion

References

- [4] John Cantwell. A Formal Model of Multi-Agent Belief-Interaction. Journal of Logic, Language and Information, 14:397–422, 2005. doi: 10.1007/s10849-005-4019-8.
- [5] John Cantwell. A Model for Updates in a Multi-Agent Setting. *Journal of Applied Non-Classical Logics*, 17(2): 183–196, 2007-01. ISSN 1166-3081, 1958-5780. doi: 10.3166/jancl.17.183-196.
- [6] Zhuang Chen, Jincenzi Wu, Jinfeng Zhou, Bosi Wen, Guanqun Bi, Gongyao Jiang, Yaru Cao, Mengting Hu, Yunghwei Lai, Zexuan Xiong, and Minlie Huang. ToMBench: Benchmarking Theory of Mind in Large Language Models. 2024-12-08. doi: 10.48550/arXiv.2402.15052.
- [7] Jelle Gerbrandy. Bisimulations on Planet Kripke. Institute for Logic, Language and Computation, Universiteit van Amsterdam, 1999. ISBN 978-90-5776-019-8.

APPSA-LMPST 2025

Masba 0000000000 Conclusion

References

- [8] Jelle Gerbrandy and Willem Groeneveld. Reasoning about Information Change. *Journal of Logic, Language and Information*, 6:147–169, 1997.
- [9] Alvin I. Goldman. Simulating Minds: The Philosophy, Psychology, and Neuroscience of Mindreading. Oxford University Press, 2006. ISBN 978-0195369830.
- [10] Robert M. Gordon. Folk Psychology as Simulation. *Mind & Language*, 1(2):158–171, 1986-06. ISSN 0268-1064, 1468-0017. doi: 10.1111/j.1468-0017.1986.tb00324.x.
- [11] Robert M. Gordon. Simulation Without Introspection or Inference From Me to You. In Martin Davies and Tony Stone, editors, *Mental Simulation: Evaluations and Applications -Reading in Mind and Language*, Readings in Mind and Language, pages 53–67. Wiley-Blackwell, 1995-10. ISBN 978-0-631-19873-4.

Introduction Philosophical Preliminary Formal Preliminary MASBA 00000 000000 0000000 0000000

- [12] James W. A. Strachan, Dalila Albergo, Giulia Borghini, Oriana Pansardi, Eugenio Scaliti, Saurabh Gupta, Krati Saxena, Alessandro Rufo, Stefano Panzeri, Guido Manzi, Michael S. A. Graziano, and Cristina Becchio. Testing theory of mind in large language models and humans. *Nature Human Behaviour*, 8(7):1285–1295, 2024-05-20. ISSN 2397-3374. doi: 10.1038/s41562-024-01882-z.
- [13] Alex. Wilf, Sihyun Shawn. Lee, Paul Pu. Liang, and Louis-Philippe Morency. Think twice: Perspective-taking improves large language models' theory-of-mind capabilities. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, *Proceddings of the 62nd Annual Meeting of the Association for Computational Linguistics*, Bangkok, Thailand, 2024. Association for Computational Linguistics. URL https://arxiv.org/abs/2311.10227.

References

Conclusion